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A B S T R A C T

Objective: The reading level of health educational materials significantly influences the understandability and
accessibility of the information, particularly for minoritized populations. Many patient educational resources
surpass widely accepted standards for reading level and complexity. There is a critical need for high-
performing text simplification models for health information to enhance dissemination and literacy. This need
is particularly acute in cancer education, where effective prevention and screening education can substantially
reduce morbidity and mortality.
Methods: We introduce Simplified Digestive Cancer (SimpleDC), a parallel corpus of cancer education materials
tailored for health text simplification research, comprising educational content from the American Cancer
Society, Centers for Disease Control and Prevention, and National Cancer Institute. The corpus includes 31
web pages with the corresponding manually simplified versions. It consists of 1183 annotated sentence pairs
(361 train, 294 development, and 528 test). Utilizing SimpleDC and the existing Med-EASi corpus, we explore
Large Language Model (LLM)-based simplification methods, including fine-tuning, reinforcement learning (RL),
reinforcement learning with human feedback (RLHF), domain adaptation, and prompt-based approaches. Our
experimentation encompasses Llama 2, Llama 3, and GPT-4. We introduce a novel RLHF reward function
featuring a lightweight model adept at distinguishing between original and simplified texts when enables
training on unlabeled data.
Results: Fine-tuned Llama models demonstrated high performance across various metrics. Our RLHF reward
function outperformed existing RL text simplification reward functions. The results underscore that RL/RLHF
can achieve performance comparable to fine-tuning and improve the performance of fine-tuned models.
Additionally, these methods effectively adapt out-of-domain text simplification models to a target domain.
The best-performing RL-enhanced Llama models outperformed GPT-4 in both automatic metrics and manual
evaluation by subject matter experts.
Conclusion: The newly developed SimpleDC corpus will serve as a valuable asset to the research community,
particularly in patient education simplification. The RL/RLHF methodologies presented herein enable effective
training of simplification models on unlabeled text and the utilization of out-of-domain simplification corpora.
1. Introduction

Accessibility and comprehensibility of patient medical educational
materials are critical to improving health literacy and patient health
[1]. Patient educational materials, including cancer-related materials,
are essential to provide patients with the information necessary to make
informed healthcare decisions. Health literacy is strongly influenced
by the clarity and understandability of such materials and plays a key
role in health outcomes [2]. It affects various aspects of patient health,
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including reducing risk factors, encouraging timely screening, and fa-
cilitating proactive health management. To ensure comprehensibility
for a broad audience, the American Medical Association (AMA) and
the National Institutes of Health (NIH) recommend a reading level of
sixth grade or lower for patient educational materials [3,4]. Despite the
critical role of these educational materials in patient health, there re-
mains a substantial discrepancy between the recommended and actual
readability observed in practice [5]. Health educational materials from
prominent sources are often at high school or college reading levels [5].
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data mining, AI training, and similar technologies. 

https://www.elsevier.com/locate/yjbin
https://www.elsevier.com/locate/yjbin
mailto:mrahma45@gmu.edu
https://doi.org/10.1016/j.jbi.2024.104727
https://doi.org/10.1016/j.jbi.2024.104727


M.M. Rahman et al.

c
N
C
r
a
a
i
s
n
e
a
a
a
a
b
B
h
d
e
f
o
h
W
r

Journal of Biomedical Informatics 158 (2024) 104727 
This reading complexity poses a barrier, particularly for people with
lower literacy or limited health knowledge, preventing them from fully
understanding and taking action on essential health information. The
accessibility and comprehensibility of educational materials are par-
ticularly concerning for disseminating cancer information, where clear
and understandable guidance impacts patient education and decision-
making [6,7]. Our focus on text-based cancer educational materials
stems from their pivotal role in patient education and the pressing need
to improve their accessibility to diverse populations.

Advancements in Natural Language Processing (NLP) and Large
Language Models (LLMs) offer a promising avenue to reconcile the
disparity in reading levels in existing medical education materials
through automatic simplification, to improve public health literacy [8].
LLMs have demonstrated proficiency in reducing linguistic complexity
and preserving medical meaning [9,10]. Finding the optimum balance
of simplification and information retention is challenging, especially
when the stakes of miscommunication are high [11]. Developing and
evaluating data-driven text simplification models requires parallel cor-
pora of original and simplified text. Creating these parallel corpora
is extremely labor-intensive and costly. In the health domain, these
challenges are exacerbated by the need for domain-specific medical
expertise. To address these challenges, robust methods are needed to
create high-performing simplification models with minimal training
data.

This paper makes significant contributions to the simplification of
health information and text simplification more broadly. We focus
on patient education materials related to digestive cancer, given the
prevalence and mortality of these cancers [12,13]. We introduce Sim-
plified Digestive Cancer (SimpleDC), a novel text simplification corpus
omprising patient educational materials from three prominent sources:
ational Cancer Institute (NCI), American Cancer Society (ACS), and
enters for Disease Control and Prevention (CDC). Although prior
esearch has explored the simplification of health information, we
re unaware of prior research focused on patient educational materi-
ls. SimpleDC is unique in its concentration on digestive cancers and
ncludes parallel sentences (original and simplified versions), where
implifications were generated by a team of nurse oncologists and a
urse practitioner with medical and patient education backgrounds. We
xplore supervised fine-tuning (SFT) and reinforcement learning (RL)
pproaches using Llama 2 [14] and Llama 3 [15] and introduce a novel
pproach for reinforcement learning from human feedback (RLHF). We
lso explore prompt-based methods using GPT-4 [16,17] and introduce
novel self-correction strategy that utilizes emergent reasoning capa-

ilities. Our evaluation includes standard automatic metrics (e.g. SARI,
LEU, BERTScore, and FKGL) and a human comparison of LLM and
uman-generated simplifications. Automatic and manual evaluations
emonstrate that the proposed RLHF reward function outperforms
xisting text simplification reward functions, complements SFT, and
acilitates domain adaptation. Our findings advance the simplification
f health text and enable the automatic creation of more accessible
ealth information, ultimately contributing to improved health literacy.
e provide the new SimpleDC corpus, trained models, and code to the

esearch community.2 ,3

2 Link to dataset: https://github.com/mushfiqur11/simpledc-dataset.git.
3 Link to code: https://github.com/mushfiqur11/healthLiteracy.git.
2 
Statement of Significance

Problem Existing patient education materials are
frequently presented at a high reading level,
reducing accessibility for individuals with lower
literacy.

What is
already
known

Existing health text simplification corpora are
limited, and there are knowledge gaps for
low-resource text simplification related to RL,
RLHF, and LLMs.

What this
paper adds

We present a novel text simplification corpus,
SimpleDC, and introduce an innovative RLHF
reward function for training LLM simplification
models. The findings demonstrate the RLHF
approach surpasses existing methods in
performance, complements supervised
fine-tuning, and supports domain adaptation.

2. Related work

Text simplification involves the transformation of texts to improve
understandability and accessibility to broad audiences. This section
presents the scope of text simplification, health text simplification
corpora, text simplification methods, and related RL research.

2.1. Scope of text simplification

Text simplification has been explored in many domains (news ar-
ticles, literature, scientific articles, etc.) where complex ideas must
be communicated clearly and concisely [18–22]. This research spans
multiple languages, addressing the unique challenges and strategies
needed for multilingual simplification to ensure clarity for linguistically
diverse audiences [23–25]. Text simplification can be subdivided into
three tasks: lexical simplification, sentence-level simplification, and
paragraph/document-level simplification [26–28]. Lexical simplifica-
tion commonly involves substituting words or phrases, including medi-
cal terminology [29–33]. However, word- or phrase-level editing limits
simplification scope and cannot accommodate more comprehensive
rephrasing or restructuring. Sentence- and document-level simplifica-
tion enables more comprehensive text restructuring to enhance overall
clarity and accessibility and typically requires parallel text corpora
(complex and simplified text) for model training and evaluation [34].

2.2. Health text simplification

Health text simplification is challenging due to medical jargon,
complex sentence structures, and lengthy explanations. It has been
explored through several tasks, such as generating patient-friendly
summaries of clinical notes [35–37], making biomedical literature
accessible to laypeople, and simplifying educational materials for pa-
tients [8,38–42]. Text simplification can focus on improving readability
or making stylistic modifications; however, simplification of health
information requires rigorous attention to meaning preservation and
medical accuracy, given the critical implications of miscommunica-
tion [8,32]. This challenge is amplified by the diverse needs of patients,
which encompasses varying levels of literacy, language background,
and other factors that require a nuanced approach to achieve clarity
and accuracy.

Due to the labor-intensive nature of annotation, there are lim-
ited health-focused text simplification corpora [9,40,43,44]. The Medi-
cal dataset for Elaborative and Abstractive Simplification (Med-EASi)
dataset comprises medical text from SIMPWIKI that was simplified
by a team of medical experts and layperson crowd workers at the
sentence-level [43]. The Autocomplete for Medical Text Simplifica-

tion (AutoMeTS) dataset consists of automatically aligned sentences

https://github.com/mushfiqur11/simpledc-dataset.git
https://github.com/mushfiqur11/healthLiteracy.git
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from English Wikipedia and Simple English Wikipedia for medical
topics [40]. Devaraj et al. provided a manually annotated parallel
corpus of biomedical literature with simplified text created by domain
experts [9]. We introduce a new health text simplification corpus, Sim-
pleDC, which is based on educational patient materials from prominent
information sources (ACS, CDC, and NCI) and explicitly focuses on the
cancer domain.

2.3. Text simplification approaches

Early text simplification work used heuristics and traditional ma-
chine learning techniques, including pattern-based paraphrasing [45,
46]. Contemporary approaches conceptualize text simplification similar
to machine translation, employing neural language models to transform
sentences into simpler counterparts [8,47]. Document-level simplifica-
tion adopts a similar machine translation approach [48,49]. Essentially
all state-of-the-art text simplification models [50,51] are based on
LLMs, including: (i) encoder–decoder architectures, like Text-to-Text
Transfer Transformer (T5) [52] and Fine-tuned LAnguage Net on T5
(FlanT5) [53] and (ii) decoder-only models such as Large Language
Model Analysis (Llama) variants [14,15,54] and Generative Pre-trained
Transformer (GPT) [17] variants, like GPT-4 [16].

LLM simplification models are predominantly created through SFT;
however, there has been some limited exploration of prompt-based
methods and reinforcement learning. Instruction tuning allows LLMs
to follow natural language instructions, facilitating prompt-based ap-
proaches such as in-context learning, chain-of-thought (CoT) learn-
ing [55,56], and self-correction [57,58]. These methods rely on the in-
herent language understanding and reasoning capabilities of LLMs [55,
59,60]. CoT learning enables models to articulate step-by-step reason-
ing, similar to human problem solving, improving response accuracy
and interpretability [55,56]. Self-correction allows models to itera-
tively refine their outputs, improving the precision and reliability of
their responses [58]. We present novel approaches for adapting these
techniques to our text simplification task.

2.4. Reinforcement learning for simplification

RL has emerged as a promising approach for text simplification [44,
61,62]. Many studies employ a mix of simplicity metrics and linguistic
features to construct their reward functions. Zhang et al. [63] in-
troduced an RL approach, DRESS, which includes a reward function
focused on simplicity, fluency, and meaning preservation. Nakamachi
et al. explored the use of rewards related to grammaticality, meaning
preservation, and simplicity [61]. Similarly, Yanamoto et al. introduced
an RL approach based on the difference between estimated and target
difficulty levels, using a novel reward calculation method [62]. Alkaldi
et al. presented an RL paradigm that refines reading levels in a con-
trolled and iterative process [64]. Luo et al. demonstrated the use of
controllability in the biomedical sector [65]. The TESLEA RL frame-
work integrates heuristic and data-driven reward models to develop
LLM-based text simplification models [44] using three rewards: (1)
readability (FKGL), (2) relevance (cosine similarity between sentence
embeddings), and (3) lexical simplicity (Zipf frequency). In our baseline
experimentation, we implemented a TESLEA-inspired approach that
includes the readability and relevance rewards but omits the Zipf
frequency-based lexical simplicity reward to avoid penalizing medically
significant but infrequent words. We introduce a new RL approach that
combines the heuristic readability reward (FKGL) with a data-driven
RLHF reward for assessing simplification.
 d

3 
3. Materials and methods

3.1. Data

3.1.1. SimpleDC
We introduce SimpleDC, which is a meticulously curated parallel

corpus, specifically designed for text simplification research within the
medical domain. It comprises patient educational information from
three high-reputation institutions: ACS, CDC, and NCI. These orga-
nizations were chosen because of their expertise and comprehensive
coverage of health topics, including cancer. There are many types
of cancer, each with different characteristics. The available cancer
educational materials on the ACS, CDC, and NCI websites exceed our
annotation budget, so we focused on the subset of cancers associated
with the digestive system to create a corpus that spans many can-
cer types that share similar terminology and topics (e.g. anatomy or
symptoms). The focus on digestive cancers is also motivated by the
prevalence and mortality of these cancers and the role that prevention
and screening play in the outcomes [66]. SimpleDC responds to the
need to make medical information more accessible and comprehensible
to a broad audience, especially minoritized populations.

We collected text from the ACS, CDC, and NCI web pages contain-
ing patient educational content for eight digestive cancers: anal, bile
duct, colorectal, gastrointestinal, liver, pancreatic, small intestine, and
stomach. For these cancer types, we collected the text from web pages
presenting introductory cancer information (e.g. About, Prevention,
Screening). The collected text was cleaned and processed, including
the removal of extraneous white space, adjusting punctuation, remov-
ing rich-text formatting, and parsing into sentences. We developed
annotation guidelines for the simplification task and trained a team
of subject matter experts with expertise in both cancer and patient
education, including two nurse oncologists and a nurse practitioner.
For each web page, we created a two-column document, where the
left and right sides contained the original text with each sentence on
a separate line. The annotators modified the sentences in the right
column based on the annotation guidelines to create the simplified
versions. This approach allowed the annotators to focus on sentence-
level simplification while considering the entire web page for context.
Table 1 presents annotation examples for each source, together with
the Flesch-Kincaid Grade Level (FKGL) scores for each example [67].
FKGL is a rule-based readability formula that assesses text complexity
based on the average sentence length and syllable count per word,
yielding scores indicative of the US school grade levels required for
comprehension.

Since text simplification is a generative task without categorical la-
bels, traditional inter-annotator agreement (IAA) metrics, like Cohen’s
Kappa, are not well suited. Instead, we evaluated annotation quality
by having two annotators create the simplified text and then having a
third annotator assess their preference for simplifications. In the initial
training round, two annotators independently generated simplifications
for each web page. The generated texts from the two annotators were
marked A and B randomly. To assess annotation quality, a third an-
notator reviewed the simplifications relative to the original text and
indicated their preferred simplification as one of four choices – A is
etter; B is better; Both are good; or None is good. The distribution of
he third annotator’s preferences was as follows: the first annotator was
referred for 34% of samples, the second annotator was preferred for
2% of samples, both annotators were considered effective for 26%
f samples, and neither simplification was deemed adequate for 8%
f samples. SimpleDC comprises 31 annotated web pages (14 train, 7
evelopment, and 10 test), including 1183 annotated sentence pairs
361 train, 294 development, and 528 test). The development and test
ets were doubly annotated by two annotators and adjudicated by the
hird annotator to create a robust evaluation set. The training set was
ingly annotated. Table 2 gives a detailed overview of the SimpleDC

ataset. Fig. 1 presents the distribution of the FKGL reading level for
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Table 1
Annotation examples and Flesch-Kincaid Grade-Level (FKGL) scores.

Source Original text Simplified text Orig. FKGL Simp. FKGL

ACS The anus is the opening at the lower end of the
intestines.

The anus is the opening where bowel movements
come out of your body.

4.4 3.6

CDC Screening can find precancerous polyps–abnormal
growths in the colon or rectum–that can be
removed before they turn into cancer.

Screening can help find growths in your colon or
rectum called precancerous polyps. They can be
removed before they turn into cancer.

10.7 5.2

NCI Primary liver cancer is a disease in which
malignant (cancer) cells form in the tissues of the
liver.

A cancer that starts in your liver is called primary
liver cancer.

10.3 6.8
Table 2
Statistics of the proposed Simple DC dataset.

Num. samples Num. of webpages Original FKGL Simplified FKGL Annotation type

Mean Median Mean Median

Train 361 14 9.6 9.1 7.8 8.0 Single
Val 294 7 7.7 7.2 7.1 7.0 Double
Test 528 10 8.1 7.6 7.4 7.5 Double
Overall 1183 31 8.5 8 7.4 7.6 –
l
t
i
[

T
p
f
t

Fig. 1. Boxplot representing the FKGL scores of Original and Simple Text of the
SimpleDC dataset (grouped by source).

the original and simplified text for different data sources. The median
reading level varies 7.0–9.2 across sources, and the reduction in FKGL
from simplification ranged 0.6–1.0.

We collected an additional 1395 web pages from ACS, CDC, and
NCI related to digestive cancer that were not annotated/simplified. We
randomly sampled 1000 of these unannotated web pages for use in the
RL procedures described in Section .

3.1.2. Med-EASi
Our experimentation utilized the Med-EASi [43] corpus, which

includes simplifications for medical texts annotated through a combi-
nation of expert, layperson, and AI-generated contributions. The more
complex medical texts are annotated by experts, while simpler texts are
handled by layperson crowd-workers, often assisted by AI-generated
suggestions. It includes annotations for specific edit types: elaboration,
replacement, deletion, and insertion. There are 1979 original-simplified
sentence pairs, covering a wide range of medical topics. The average
FKGL of the original and simplified samples is approximately 13th and
10th grades, respectively. The introduction of Med-EASi includes sim-
plification results based on fine-tuning T5-large [52]. Experimentation
included a conventional machine translation approach using T5, as well
as a controlled simplification approach that utilized the edit types.

3.2. Simplification models

Our exploration of SimpleDC and Med-EASi focused on state-of-
the-art decoder-only LLMs, including Llama 2 [14], Llama 3 [15]
4 
and GPT-4 [16]. Using Llama models, we explored zero-shot, SFT,
and RL/RLHF approaches. Using GPT-4, we explored prompt-based
strategies, including a novel self-correction strategy.

3.2.1. Supervised fine-tuning (SFT)
As a baseline, we trained Llama models on original-simplified sen-

tence pairs using conventional SFT with cross-entropy loss. SFT exper-
imentation included SimpleDC and Med-EASi.

3.2.2. Reinforcement learning
We explored RL strategies to incorporate unlabeled in-domain text

into training. Using Proximal Policy Optimization (PPO) [68], we in-
vestigated RL reward functions that include metrics related to reading
level assessment (i.e., FKGL), topical relevance (semantic similarity),
and a data-driven approach to identify simplified text (referred to as
Original vs. Simplified below). This exploration includes RLHF [69].
Fig. 2 presents an overview of the RL pipeline, each reward metric is
described below. RL frameworks commonly use reward values in the
range [0, 1], where higher values indicate more desirable outcomes and
lower values indicate less desirable outcomes. For each reward metric
presented, individual and composite rewards are scaled to this range.

Readability Reward: FKGL is a heuristic function to assess reading
evel. Although an imperfect metric, FKGL provides an automatic way
o assess the reading grade level of the text. The TESLEA approach [44]
ncludes a normalization strategy to convert FKGL scores to the range
−1, 1], based on the target reading level. Our reading level reward,
𝑅𝐹𝐾𝐺𝐿, which was inspired by the TESLEA approach, was calculated
by normalizing the FKGL score by the reading level target and applying
a sigmoid function:

𝑅𝐹𝐾𝐺𝐿 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑
(

6.5 − 𝐹𝐾𝐺𝐿(𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑)
6.5

)

he normalized reading score (fraction within the sigmoid) yields
ositive values for simpler text (more desirable) and negative values
or more complex text (less desirable). The sigmoid function maps
he normalized reading scores to the range [0, 1], where higher values

indicate lower reading levels.
Relevance Reward: The relevance reward, 𝑅𝑅𝑒𝑙, is intended to

quantify the semantic relationship between the simplified and original
texts, where a higher reward indicates greater semantic similarity. We
follow the TESLEA approach [44] for relevance scoring: (1) the original
and simplified texts are mapped to separate vector representations
using an encoder and (2) semantic similarity is assessed based on cosine
similarity between these vectors. BioSentVec [70] was selected as the
encoder, as it has been extensively trained on biomedical literature.
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Fig. 2. Reinforcement learning from human feedback for medical text simplification.
Cosine similarity falls in the range [0, 1], where higher values indicate
higher semantic correspondence. The relevance reward incentivizes the
preservation of semantic relatedness between the original and simpli-
fied texts. We used the pre-trained BioSentVec without any training on
SimpleDC.

Original vs. Simplified (OvS) Reward: We introduce a new RL re-
ward, 𝑅𝑂𝑣𝑆 , based on the likelihood that a sample has been simplified.
Using SimpleDC training data, we trained a binary classifier to label
samples as original or simplified using BioMed-RoBERTa base [71].
Similar to InstructGPT [72], we utilize a classifier trained on human-
annotated data; however, in our formulation, the classifier distinguishes
between original and simplified texts. This classifier provides a proba-
bilistic reward signal reflecting human judgment, capturing annotators’
preferences and is considered RLHF. The OvS classifier achieved 75.1%
accuracy on the SimpleDC development set. This performance demon-
strates the ability to identify key features of the original and simplified
texts. The reward value, 𝑅𝑂𝑣𝑆 , is the predicted probability that the text
is simplified (𝑃 (𝑠𝑖𝑚𝑝𝑙𝑖𝑓 𝑖𝑒𝑑)) providing a continuous reward signal rang-
ing from [0, 1], where higher values suggest better simplification. Our
intuition behind this reward function is that it provides a mechanism
for learning features of the original and simplified text and propagating
this learning to unlabeled samples during RL.

Reward Aggregation: We calculated aggregated reward values
from the individual metrics using the harmonic mean, 𝐻 , to balance
the contribution from each metric, as

𝐻(𝑥1, 𝑥2) =
1

1
𝑥1

+ 1
𝑥2

We developed two aggregated reward functions:

• 𝐑𝐅𝐊𝐆𝐋+𝐑𝐞𝐥: We combined the reading level reward, 𝑅𝐹𝐾𝐺𝐿, and
the relevance reward, 𝑅𝑅𝑒𝑙, to create an aggregated reward,
𝑅𝐹𝐾𝐺𝐿+𝑅𝑒𝑙 = 𝐻(𝑅𝐹𝐾𝐺𝐿, 𝑅𝑅𝑒𝑙). This reward is intended to capture
both text complexity and semantic similarity to yield text that is
at the desired reading level and preserves the original meaning. It
does not incorporate any learning from SimpleDC and is therefore
considered RL.
5 
• 𝐑𝐅𝐊𝐆𝐋+𝐎𝐯𝐒: We also combined the reading level reward, 𝑅𝐹𝐾𝐺𝐿,
and the Original vs. Simplified reward, 𝑅𝑂𝑣𝑆 , to create an aggre-
gated reward, 𝑅𝐹𝐾𝐺𝐿+𝑂𝑣𝑆 = 𝐻(𝑅𝐹𝐾𝐺𝐿, 𝑅𝑂𝑣𝑆 ). This aggregated
reward is intended to assess text complexity (𝑅𝐹𝐾𝐺𝐿) and identify
linguistic features that differentiate the original and simplified
texts (𝑅𝑂𝑣𝑆 ) to produce text that is both at the desired reading
level and emulates the simplification of SimpleDC. As this reward
function incorporates a training signal derived from the SimpleDC
annotations, it is considered RLHF.

In initial experimentation, we explored weighted averages, drawing
inspiration from the TESLEA paper [44]. However, due to inconsistent
outcomes with hyperparameters and lower performance, we chose to
focus on experiments employing the harmonic mean.

3.2.3. Fine-tuning with reward models
We explored different pipelines for incorporating RL/RLHF, includ-

ing only using RL/RLHF, combining SFT and RL/RLHF, and using
RL/RLHF for domain adaptation:

• RL/RLHF only : A pre-trained LLM was trained using RL/RLHF
with unlabeled in-domain data (digestive cancer text) to learn
the target domain and simplification task without any SFT of
the LLM on annotated in-domain data (SimpleDC). The goal of
this exploration was to understand the achievable performance
without any SFT.

• In-domain SFT + RL/RLHF : A pre-trained LLM was first trained
through SFT on labeled in-domain data (SimpleDC train set),
followed by continued training through RL/RLHF on unlabeled
in-domain data (digestive cancer text). This experimentation was
intended to assess whether RL/RLHF can continue to improve the
model even after in-domain SFT.

• Out-domain SFT + RL/RLHF : A pre-trained LLM was first trained
through SFT on labeled out-of-domain data (Med-EASi training
set), followed by continued training through RL/RLHF unlabeled
in-domain data (digestive cancer text).
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Fig. 3. Chain-of-Thought (CoT) prompting along with Baseline and In-context.

In this experimentation, the unlabeled in-domain text consisted of 1000
web pages from ACS, CDC, and NCI related to digestive cancer that
were not annotated and did not overlap with SimpleDC.

In all RL experiments, training used PPO, where a Kullback–Leibler
(KL) divergence constraint [73] was implemented to limit excessive
deviation of the RL-trained LLM from the original LLM. This divergence
constraint provides a regulatory mechanism to ensure the LLM main-
tains linguistic coherence and avoids overfitting to potentially incorrect
or excessive scores from the reward model. This constraint was essential
due to the inherent limitations of the reward model, which may not
accurately capture the quality of the generated text.

3.2.4. Prompt-based models
Given our focus on developing simplification models with limited

training data and the success of GPT-4 in many tasks, we explored
prompt-based approaches for text simplification with GPT-4 [16], in-
cluding in-context learning, CoT, and self-correction.

Zero-shot: In the zero-shot approach, GPT-4 was instructed to
simplify the text to an elementary level of reading, to provide a
baseline for evaluating more complex prompting strategies. The specific
simplification prompt is included in the Baseline module in Fig. 3.

In-context Learning: The in-context variant used the same initial
prompt as the zero-shot approach but was augmented with three rep-
resentative examples from the SimpleDC training set. These examples
were manually selected to illustrate the desired simplification style and
complexity.

FKGL-Enhanced Prompt: Building on the initial prompt, we added
a detailed description of the FKGL heuristic, indicating that lower
reading levels are associated with shorter words and sentences, and
provided the FKGL formula for grade-level calculations.

Chain-of-Thought (CoT): Our CoT approach builds on the FKGL-
Enhanced Prompt approach by providing the model with additional
sample-specific context, including the average word length, average
sentence length, and a list of longer words (≥ 3 syllables) for each sam-
ple. This model aims to provide explicit guidance for the simplification
process and anchor the simplification in commonly used readability
standards. Fig. 3 illustrates the CoT approach.

Self-Correction (SC): Inspired by recent work on self-correction
[57,58], we created the self-correction approach for simplification
shown in Fig. 4. The intent was to both exploit the reasoning capabili-
ties of the LLM and incorporate additional external learning signals to
iteratively refine the output. Each generated simplification was scored
for reading level using FKGL and semantic fidelity using BERTScore.
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Acceptance criteria include: (1) FKGL score ≤ 6 or FKGL reduced by
three grade levels from the original text and (2) BERTScore between
the generated and original texts ≥ 0.95. If the simplification met the
acceptance criteria, it was accepted; otherwise, the simplification was
fed back into GPT-4 with instructions for improving the simplification.
Each sample was processed iteratively at most three times.

3.2.5. Experimental paradigm
We utilized PyTorch [74] and Hugging Face’s Transformers [75].

We used one Llama 2 variant: Llama-2-7b-chat-hf 4 and two Llama 3
variants: Llama-3-8B-Instruct 5 and Llama-3-70B-Instruct.6 Experimenta-
tions were performed using NVIDIA A100 GPUs.

For the Llama-2-7b-chat-hf model, all experiments, including zero-
shot, SFT, and RL/RLHF, were conducted using a single A100-80 GB
GPU. For the Llama-3-8B-Instruct model, zero-shot and SFT experiments
were also feasible using a single A100 GPU; however, RL/RLHF experi-
mentation required two A100-80 GB GPUs. For the Llama-3-70B-Instruct
model, zero-shot inference was conducted using four A100-80 GB GPUs
without quantization; however, SFT required 4-bit quantization [76]
with four A100-80 GB GPUs. Unfortunately, RL/RLHF experimentation
with Llama-3-70B-Instruct was not feasible with our computational
resources, even with the 4-bit quantization and utilization of four
A100-80 GB GPUs.

We also used Weights and Biases [77] for tracking training and per-
formance. For SFT, we utilized LORA [78] utilities from the Parameter-
Efficient Fine-Tuning (PEFT) package [79,80], to reduce the time and
space complexity of model training. Hyperparameters were selected
based on computational constraints and performance optimization. We
selected a batch size of 8 to balance memory usage and model updating.
The learning rate was set to 2e−4, following preliminary experiments
to find a balance between catastrophic forgetting and suboptimal con-
vergence. Additional hyperparameters, such as weight decay (0.001)
and maximum gradient norm (0.3), were included to prevent over-
fitting and maintain the stability of the training process. For RLHF,
we specified a range of hyperparameters, including a learning rate of
1.41e−5 and PPO epochs of 2, reflecting a conservative approach to
incremental learning. Our choice of batch and mini-batch sizes, set
to 4, was influenced by the need to manage the computational load
effectively while still capturing the nuances of gradient updates during
training.

3.3. Evaluation

We utilized widely accepted evaluation metrics, each addressing
specific aspects of text simplification quality, including:

1. System output Against References and against the Input
sentence (SARI) [81]: SARI evaluates simplification quality by
comparing system-generated output with both the original and
reference texts. Outputs are assessed based the operations: add -
words that are in the reference but not in the original text; keep -
words from the original text are also in the reference, and delete
- words from the original text that are not in the reference.

2. Bilingual Evaluation Understudy (BLEU) [82,83]: BLEU mea-
sures the precision of n-grams in the generated text against a
reference by evaluating how many words in the generated text
are also present in the reference text. We used 4-gram BLEU.

3. BERTScore [84]: BERTScore quantifies the semantic similar-
ity between texts using contextual embeddings from the BERT
model. It compares sentence-level embeddings of the gener-
ated text and reference texts, providing a measure of semantic
comparison beyond surface-level text matching.

4 https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
5 https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
6 https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct

https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct
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Fig. 4. Diagram of self-correction prompting.
4. Recall-Oriented Understudy for Gisting Evaluation (ROUGE)
[85]: ROUGE focuses on n-gram overlap between the output
and reference texts. ROUGE-N measures the overlap of n-grams,
and ROUGE-L measures the longest common subsequence. We
used ROUGE-L because it is less sensitive to minor differences
in wording and is particularly useful for assessing fluency and
coherency.

5. Flesch-Kincaid Grade Level (FKGL) [67]: FKGL assesses the
reading level of text based on the average number of sylla-
bles per word and number of words per sentence. FKGL scores
indicate the estimated grade level.

4. Results

4.1. Text simplification

Table 3 presents the performance on the withheld SimpleDC test
set, evaluating: Llama-2-7b-chat-hf, Llama-3-8B-Instruct, Llama-3-70B-
Instruct, and GPT-4 Turbo. In the zero-shot setting (Exp. 01, 03, 05,
and 15), Llama-2-7b-chat-hf achieved the highest SARI score, although
GPT-4 achieved the lowest FKGL. SFT with the Llama models (Exp.
02, 04, and 06) markedly improved performance across SARI, BLEU,
BERTScore, and ROUGE metrics, while reducing the FKGL by ap-
proximately two grade levels. These results underscore the role of
SFT in understanding and learning the SimpleDC annotation schema
and the annotators’ stylistic nuances. Notably, both Llama-2-7b-chat-hf
and Llama-3-8B-Instruct showed substantial performance improvements
with SFT, with 47.92 and 52.04 SARI and 7.08 and 6.32 FKGL, re-
spectively, indicating effective task training. Llama-3-70B-Instruct also
demonstrated noteworthy improvements with SFT (Exp. 06), achieving
46.73 SARI and the lowest reading level at 5.16 FKGL.

The success of the RL/RLHF varies by Llama variant and reward
strategy. In RL/RLHF-only experiments, Llama-3-8B-Instruct (Exp. 11–
13) consistently outperformed Llama-2-7b-chat-hf (Exp. 07–09) across
multiple metrics, achieving higher SARI and lower FKGL. ForLlama-3-
8B-Instruct, the proposed RLHF reward function, 𝑅𝐹𝐾𝐺𝐿+𝑂𝑣𝑆 , markedly
increased the SARI score from 20.44 (Exp. 11) in the RL scenario to
55.01 (Exp. 13). These findings emphasize the importance of integrat-
ing human feedback from the target task/data set through RLHF, as
compared to the data set agnostic feedback of RL alone.
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When combining SFT with RLHF for Llama-2-7b-chat-hf (Exp. 10),
the model achieved the highest performance, at 60.39 SARI, 0.70
BLEU, and 0.97 BERTScore. This configuration also yielded a relatively
low reading level at 8.24 FKGL, demonstrating that SFT and RLHF
can be complementary in enhancing text simplification capabilities.
However, for Llama-3-8B-Instruct, combining SFT with RLHF (Exp. 14)
also showed no discernable improvement over RLHF alone (Exp. 13). In
this configuration, the model achieved a SARI of 50.98, BLEU of 0.53,
BERTScore of 0.91, and FKGL of 8.11.

For in-context learning, GPT-4 Turbo (Exp. 15–19) achieved lower
scores across all adequacy metrics (SARI, BLEU, BERTScore, and
ROUGE) compared to the Llama models (Exp. 01–14) but achieved the
lowest FKGL. Lower performance does not necessarily indicate lower
quality simplifications generated by GPT-4. Based on our qualitative
review, GPT-4 edited the original text more extensively, resulting in
a larger divergence between the original and simplified text. Addi-
tionally, the voice or writing style of GPT-4 appears to differ from
that of our annotators, contributing to the lower performance for
adequacy metrics. The FKGL-Enhanced prompting strategy (Exp. 17)
achieved the best performance across adequacy metrics, and the CoT
prompting strategy (Exp. 18) achieved the lowest FKGL. The Self-
Correction approach (Exp. 19) achieved a balance between adequacy
and reading level at 22.86 SARI and 4.48 FKGL.

4.2. Domain adaptation

We used the Med-EASi corpus to explore the role of RL/RLHF in do-
main adaptation by first conducting out-of-domain SFT with Med-EASi,
followed by in-domain RL/RLHF training using unlabeled digestive
cancer text. Table 3 (Exp. 20–25) presents the domain adaptation
results. This experimentation evaluated the feasibility of leveraging out-
of-domain corpora to enhance in-domain performance. In this domain
adaptation setting, the performance gains from RL/RLHF vary by Llama
variant and specific reward function. For Llama-3-8B-Instruct, continued
in-domain RLHF using the 𝑅𝐹𝐾𝐺𝐿+𝑂𝑣𝑆 reward markedly improved per-
formance over out-of-domain SFT on Med-EASi alone, increasing SARI
from 38.73 to 51.06, BLEU from 0.43 to 0.57, and ROUGE from 0.60
to 0.72 (Exp. 23 vs. Exp. 25). However, Llama-3-8B-Instruct with RLHF

alone and no prior SFT on Med-EASI (Exp. 13) achieved better results
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Table 3
In-domain and domain adaptation performance of Prompt-based, SFT, and RLHF experimentation on SimpleDC dataset. Source FKGL: 8.11, Target FKGL: 7.65. Higher scores
indicate better performance for SARI, BLEU, BERTScore, and ROUGE (↑), whereas lower scores are preferred for FKGL (↓).

In-Domain

Model name Variant Exp.
No.

SARI
(↑)

BLEU
(↑)

BERT
Score (↑)

ROUGE
(↑)

FKGL
(↓)

Llama-2-7b-
chat-hf

Zero-shot 01 28.43 0.15 0.90 0.48 9.08

SFT 02 47.92 0.47 0.95 0.70 7.08

Llama-3-
8B-Instruct

Zero-shot 03 25.15 0.11 0.90 0.46 8.96

SFT 04 52.04 0.42 0.93 0.61 6.30

Llama-3-
70B-Instruct

Zero-shot 05 24.49 0.02 0.84 0.12 8.59

SFT 06 46.73 0.39 0.93 0.56 5.16

Llama-2-7b-
chat-hf

RL (𝑅𝐹𝐾𝐺𝐿+𝑅𝑒𝑙) 07 29.99 0.29 0.91 0.54 8.29

RLHF (𝑅𝑂𝑣𝑆 ) 08 31.62 0.30 0.91 0.56 8.40

RLHF (𝑅𝐹𝐾𝐺𝐿+𝑂𝑣𝑆 ) 09 29.03 0.28 0.91 0.54 8.38

SFT+RLHF (𝑅𝐹𝐾𝐺𝐿+𝑂𝑣𝑆 ) 10 60.39 0.70 0.97 0.89 8.24

Llama-3-
8B-Instruct

RL (𝑅𝐹𝐾𝐺𝐿+𝑅𝑒𝑙) 11 20.44 0.11 0.88 0.32 7.38

RLHF (𝑅𝑂𝑣𝑆 ) 12 42.45 0.37 0.91 0.51 8.02

RLHF (𝑅𝐹𝐾𝐺𝐿+𝑂𝑣𝑆 ) 13 55.01 0.59 0.93 0.80 8.24

SFT+RLHF (𝑅𝐹𝐾𝐺𝐿+𝑂𝑣𝑆 ) 14 50.98 0.53 0.91 0.73 8.11

GPT-4 Turbo

Zero-shot 15 22.03 0.14 0.92 0.43 5.71

In-context 16 22.04 0.14 0.92 0.42 5.68

FKGL-Enhanced 17 23.78 0.24 0.94 0.53 5.37

CoT 18 20.97 0.18 0.93 0.46 4.71

Self-Correction 19 22.86 0.21 0.93 0.51 4.84

Domain adaptation

Model name Variant Exp.
No.

SARI
(↑)

BLEU
(↑)

BERT
Score (↑)

ROUGE
(↑)

FKGL
(↓)

Llama-2-7b-
chat-hf

None 20 35.15 0.52 0.94 0.64 8.49

𝑅𝐹𝐾𝐺𝐿 + 𝑅𝑅𝑒𝑙 21 45.71 0.63 0.96 0.78 7.50

𝑅𝐹𝐾𝐺𝐿 + 𝑅𝑂𝑣𝑆 22 74.41 0.73 0.97 0.89 7.74

Llama-3-
8B-Instruct

None 23 38.73 0.43 0.93 0.60 6.36

𝑅𝐹𝐾𝐺𝐿 + 𝑅𝑅𝑒𝑙 24 49.97 0.45 0.92 0.59 7.27

𝑅𝐹𝐾𝐺𝐿 + 𝑅𝑂𝑣𝑆 25 51.06 0.57 0.91 0.72 8.39
T
H

overall, indicating the combined out-of-domain SFT and in-domain
RLHF training were not complementary.

For Llama-2-7b-chat-hf, RL/RLHF alone (Exp. 07–09) was not as ef-
fective; however, the best performance across all models was achieved
by combining out-of-domain SFT on Med-EASi with in-domain RLHF
with the 𝑅𝐹𝐾𝐺𝐿+𝑂𝑣𝑆 reward. For this configuration, continued training
through in-domain RLHF increased SARI from 35.15 to 74.41, BLEU
from 0.52 to 0.73, and ROUGE from 0.64 to 0.89 and decreased FKGL
from 8.49 to 7.74 (Exp. 20 vs Exp. 22). The 𝑅𝐹𝐾𝐺𝐿+𝑅𝑒𝑙 reward (Exp. 21)
also led to improvements over out-of-domain SFT alone but was less
effective compared to the 𝑅𝐹𝐾𝐺𝐿+𝑂𝑣𝑆 reward. The domain adaptation
esults highlight that the top-performing domain-adapted LLM (Exp.
2) achieves comparable performance to the best in-domain models
Exp. 10, 13, 04 and 14). These findings affirm the potential of com-
ining SFT with RL/RLHF to enhance performance while minimizing
nnotation data requirements and associated costs.

.3. Human evaluation

The above assessment focuses on adequacy and fluency, where
dequacy refers to the preservation of the original meaning, and fluency
ssesses the readability of the simplification. Automatic adequacy and
luency metrics provide useful information; however, these metrics
o not holistically assess the quality of simplifications [86]. To pro-

ide a comprehensive evaluation, we manually evaluated human- and

8 
able 4
uman evaluation of Human-generated simplification and AI-generated simplification.
Preservation of meaning

Source Human vs Llama 2 Human vs GPT-4

Human AI Both None Human AI Both None

CDC 0 4.35 95.65 0 62.32 10.14 21.74 5.80
NCI 8.89 12.22 78.89 0 56.67 15.56 27.78 0
ACS 11.11 7.19 81.70 0 50.98 6.54 41.18 1.31

Overall 8.01 8.01 83.97 0 55.13 9.94 33.02 1.93

Understandability

Source Human vs Llama 2 Human vs GPT-4

Human AI Both None Human AI Both None

CDC 18.84 1.45 75.36 4.35 43.48 42.03 8.70 5.80
NCI 30 17.78 46.67 5.56 35.56 48.89 14.44 1.11
ACS 19.61 10.46 65.36 4.58 35.95 56.86 5.23 1.96

Overall 22.4 10.6 62.2 4.8 37.5 51.3 8.7 2.6

AI-generated simplifications. Manual evaluations were performed by
three nurse practitioners with extensive knowledge of patient care and
education, who were not involved in the SimpleDC annotation. The
nurse practitioners reviewed a subset of the test samples in an A-
B comparison, to evaluate the preservation of medical meaning and
understandability for a broad audience. In this A-B comparison, the



M.M. Rahman et al. Journal of Biomedical Informatics 158 (2024) 104727 
Table 5
Error Analysis of the best Llama 2 model (Exp 22) and the best GPT-4 model (Exp 19).

Source Unchanged from original Insertions in new Deletions from original

Human Llama 2 GPT-4 Human Llama 2 GPT-4 Human Llama 2 GPT-4

CDC 92.1% 98.2% 53.9% 9.3% 1.3% 57.3% 7.9% 1.8% 46.1%
NCI 72.8% 81.2% 41.5% 24.7% 13.2% 65.5% 27.2% 18.8% 58.5%
ACS 96.4% 92.9% 51.9% 2.9% 3.6% 60.8% 3.6% 7.1% 48.1%

Overall 88.6% 90.7% 49.3% 10.6% 5.9% 61.4% 11.4% 9.3% 50.7%
reviewers could indicate their preference for A, B, Both, or None. The
reviewers were blinded to which samples, A or B, were human- or
AI-generated, and the order (A vs. B assignments) was shuffled. The
evaluation included: (1) human vs. the best performing Llama (Exp. 22)
and (2) human vs. the best performing GPT-4 (Exp. 19). The manual
evaluation comprised a total of 104 sentence pairs, including 23 from
CDC, 30 from NCI, and 51 from ACS.

Table 4 presents the results of the human evaluation, which demon-
strate human and Llama simplifications consistently preserve the mean-
ing of the original text and use understandable language. This further
validates the results in Table 3, specifically that the trained Llama
model successfully learns the simplification task and emulates hu-
man simplification. The reviewers preferred human simplifications over
GPT-4 simplifications to preserve meaning. The reviewers preferred the
readability of GPT-4 over human simplification, suggesting a trade-off
between fluency and adherence to the original content. This nuanced
evaluation highlights the complexity of balancing adequacy and fluency
in text simplification tasks, underscoring the need for a multifaceted
approach in assessing model performance.

4.4. Error analysis

Despite GPT-4’s advanced language capabilities and significantly
larger model size, the trained Llama models outperformed GPT-4 in
both automated metrics and manual evaluations. This unexpected re-
sult can be attributed to differences in task interpretation. The simpli-
fication task was designed to improve the accessibility of the text for
patients without altering its meaning. To better understand the editing
performed by human annotators and LLMs to create the simplified
versions, we calculated the proportion of tokens that are unchanged
(not edited), inserted, and deleted from the original text. Table 5
presents a summary of the unchanged, inserted, and deleted words
in the SimpleDC test set, normalized by the number of tokens in the
original text (comparing with the Llama 2 model outputs from Exp.
22). In creating SimpleDC, the annotators edited the NCI content more
heavily than the ACS and CDC content because the NCI content started
at a higher reading grade level (median 7.6 for ACS, 7.0 for CDC,
and 8.3 for NCI). The Llama 2 model performed very light editing,
deleting 9.3% of existing tokens and inserting 5.9% new tokens. In
contrast, GPT-4 made many more edits, deleting 50.7% of existing
tokens and inserting 61.4% new tokens. This discrepancy highlights
the importance of task alignment between human expectations and AI
model interpretations.

The GPT-4 performance was negatively impacted in the automatic
and manual evaluations by over-generation. This tendency to add new
text contrasts sharply with the more conservative approach of human
annotators and the Llama models, which introduced new content at
rates of approximately 10.6% and 5.9% respectively, with average
word counts of 14.24 and 14.05. Although these insertions can enhance
understandability by adding explanatory content or simplifying com-
plex ideas, they can also stray from the original message. For example,
the GPT model simplified the sentence ‘‘The main functions of the liver
include the following:’’ into a 30+ word sentence (‘‘The liver has some
big jobs ... help break down fat in food’’.). While this type of generation
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may be helpful for the audience, it does not align with the objective of
the task.

The analysis underscores the differing abilities of the models to
adapt to the inherent reading complexity of the source materials,
notably between human annotators and trained Llama 2 and GPT-4
models. Specifically, both human annotators and the trained Llama 2
model demonstrated a nuanced ability to modulate their simplification
efforts in response to the reading level complexity of the sources (ACS,
NCI, and CDC). This adaptability is indicative of a strategic approach
to text simplification, where the extent of modifications is calibrated
based on the initial complexity of the source material. Conversely, the
GPT-4 strategy appeared relatively uniform across sources, indicating
a lack of sensitivity to the nuanced demands of the simplification task.
Such uniformity may imply a limitation in prompt-based approaches to
simplification.

5. Discussion

Our research explores the effectiveness of LLMs for simplifying
educational health information, contrasting the performance of SFT,
RL, RLHF, and in-context learning approaches. We explore the role of
model training for specific tasks, revealing how GPT models, despite
their general prowess, require targeted adjustments to excel in special-
ized contexts. We introduce a novel reward model designed to optimize
simplification by focusing on readability, relevance, and fidelity to
the original text’s intent. This new model incorporates an automatic
reading-level metric (FKGL) and the innovative Original vs. Simplified
(OvS) reward informed by human feedback. Our findings demonstrate
how RLHF can improve the quality of text simplifications, making
complex medical information more accessible and understandable to
patients. The integration of human feedback into the reinforcement
learning process, through the OvS reward, marks a significant advance-
ment in aligning AI-generated content with human expectations. Our
study advances AI-driven text simplification for healthcare communi-
cation and demonstrates the potential for task-specific LLMs to bridge
the gap between medical expertise and patient understanding.

Our results indicate that foundational LLMs, with their unique
architectures and training protocols, respond differently to continued
training. Specifically, Llama-2 and Llama-3 exhibited varied responses
to SFT and RLHF. For Llama-2, SFT improved performance across all
metrics compared to zero-shot; however, RLHF did not significantly
alter performance relative to zero-shot. Combining SFT and RLHF for
Llama-2 resulted in improved performance relative to either method
used individually in both in-domain and domain adaptation experi-
ments. In contrast, for Llama-3, both SFT and RLHF independently
improved performance, with in-domain RLHF training yielding the
best results. However, combining SFT and RLHF for Llama-3 did not
enhance performance beyond that of RLHF alone. The architectural and
training specifics for Llama-3 are not yet available, making it difficult
to fully understand the differences between Llama-2 and Llama-3 and
the reasons for these performance discrepancies.

The ability to accurately simplify complex medical texts without
losing essential information is crucial for improving patient understand-
ing and engagement. Our research illustrates the potential of using AI
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to assist in this process but also highlights the challenges in ensuring
the simplifications are appropriate and accessible to all patients. This
emphasizes the need for a collaborative approach that combines tech-
nical innovation with input from healthcare professionals to ensure the
simplifications meet the diverse needs of the patient population. By
leveraging AI’s capabilities alongside expert human feedback, we can
better tailor health information to enhance patient comprehension and
empowerment.

6. Conclusions

In this paper, we present SimpleDC, a carefully curated human-
annotated text simplification corpus for digestive cancer education.
The rich annotations of the dataset have been instrumental in training
effective simplification models. We explore a range of learning ap-
proaches, including SFT, RL, RLHF, and prompt-based approaches. We
introduced a new RLHF reward function, 𝑅𝐹𝐾𝐺𝐿+𝑂𝑣𝑆 , which outper-
forms an existing RL reward function for text simplification. In terms of
model performance, we observed that Llama models with task-specific
training outperformed GPT-4. This highlights the impact of high-quality
task-specific annotated data in improving model performance and sim-
plification quality, including balancing comprehensibility and medical
accuracy. Our results also demonstrate that RL/RLHF can be used to
incorporate unlabeled text into training to improve simplification per-
formance: (1) as a standalone training step, (2) in conjunction with SFT,
and (3) as a domain adaptation technique. Although this represents a
significant advancement, our findings also underscore the vast potential
for future research in this area. Our work provides a robust foundation
for further explorations, aiming to refine and expand the capabilities
of NLP models to simplify complex medical information for enhanced
patient understanding. Future research could explore integrating mul-
timodal data sources, such as medical images or patient educational
videos, alongside textual information to further enhance the simplifi-
cation models’ ability to provide comprehensive and accessible health
education. Additionally, investigating the incorporation of feedback
mechanisms from actual patients and healthcare professionals into the
model training process could significantly improve the relevance and
usability of simplified medical content.

7. Data availability and legal considerations

We provide the new SimpleDC corpus to the research community
to advance health text simplification.7 In developing SimpleDC, we
utilized publicly available text data from the NCI, ACS, and CDC
websites with the goal of advancing text simplification and public
health communication. Our use of this data is in alignment with fair
use principles, as the data was employed exclusively for academic and
research purposes, without any commercial intent. We minimized data
usage, extracting only the portions necessary to support our work on
text simplification and public health communication. Furthermore, our
use of the data does not adversely affect the market value or potential
of the original content. The text data from the NCI, ACS, and CDC was
specifically used to improve NLP methods that enhance the accessibility
of health information, with all sources carefully attributed. SimpleDC
is made publicly available, with detailed source attribution, ensuring
full transparency and traceability.

7 https://github.com/mushfiqur11/simpledc-dataset.git
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Appendix. Case study of simplification outputs

Table A.6 presents text simplification examples from Llama-2 and
Llama-3 models using various fine-tuning and reinforcement learning
approaches. Both Llama-2-7b and Llama-3-8b models generally pro-
duce concise and accurate simplifications. However, the Llama-3-70b
model, while generating seemingly more readable outputs, tends to add
additional information not present in the original text. These results
underscore the importance of model choice and configuration in text
simplification, highlighting the need for precise model selection and
fine-tuning in domain-specific applications.

8 https://github.com/mushfiqur11/simpledc-dataset.git
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Table A.6
Simplification outputs of the same sentence by different models.
Source/Model Exp.

No.
Simplification
output

Original – As food is digested, it passes from the stomach to the
small intestine.

Target Simplification – As food is broken down in your body, it passes from
the stomach to the section of the gut called the small
intestine.

Llama-2-7b with SFT (SimpleDC) +
RLHF (SimpleDC)

10 Food is digested as it passes from the stomach to the
small intestine.

Llama-2-7b with SFT (MedEASi) +
RLHF (SimpleDC)

22 At this point, food passes from the stomach to the
colon.

Llama-3-8b with SFT (SimpleDC) +
RLHF (SimpleDC)

14 Food is digested and it passes from the stomach to
the small intestine.

Llama-3-8b with SFT (MedEASi) +
RLHF (SimpleDC)

25 As food is digested, it goes from the stomach to the
small intestine.

Llama-3-70b with SFT (SimpleDC) 06 When you eat food, it goes from the stomach to the
small intestine. This is called the small bowel. It is
like a long, thin, winding road.

GPT-4 with Self-correction 19 When we eat, the food goes from our stomach to our
small intestine.

Original – Basal cell carcinomas are a type of skin cancer that
can develop in the perianal skin.

Target Simplification – Basal cell cancer is a kind of skin cancer that can
sometimes start in the perianal skin.

Llama-2-7b with SFT (SimpleDC) +
RLHF (SimpleDC)

10 Basal cell carcinomas are a type of skin cancer that
can develop in the perianal skin.

Llama-2-7b with SFT (MedEASi) +
RLHF (SimpleDC)

22 Basal cell cancer is a type of skin cancer that can
develop in the perianal skin.

Llama-3-8b with SFT (SimpleDC) +
RLHF (SimpleDC)

14 Basal cell cancers are a type of skin cancer that can
develop in the perianal skin.

Llama-3-8b with SFT (MedEASi) +
RLHF (SimpleDC)

25 Basal cell carcinomas are a type of skin cancer that
can develop in the perianal skin.

Llama-3-70b with SFT (SimpleDC) 06 Basal cell carcinomas are a kind of skin cancer that
can grow in the perianal skin. This is called anal
melanosis.

GPT-4 with Self-correction 19 Basal cell carcinomas are a kind of skin cancer. They
can grow on the skin around the bottom.
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